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The correct calculation of and values for the critical mass of uranium or plutonium necessary

for a nuclear fission weapon have long been understood and publicly available. The calculation

requires solving the radial component in spherical coordinates of a diffusion equation with a

source term, so is beyond the reach of most public policy and many first-year college physics

students. Yet it is important for the basic physical ideas behind the calculation to be understood

by those without calculus who are nonetheless interested in international security, arms control,

or nuclear non-proliferation. This article estimates the critical mass in an intuitive way that

requires only algebra. VC 2014 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4885379]

I. INTRODUCTION

Fissile materials are materials that can sustain an explo-
sive fission chain reaction.1 A “threshold bare critical mass”
Mc (henceforth just “critical mass”) is the minimum mass of
fissile material that is needed for that chain reaction. At the
threshold critical mass, neutron production by fission within
a volume just balances neutron loss through the volume’s
surface, and the number density of neutrons is constant in
time. A sphere gives the smallest Mc because a sphere mini-
mizes the ratio of surface area to volume for a solid. “Bare”
critical mass indicates that there is no neutron reflector; such
a component reflects neutrons that would otherwise escape
from the sphere back into its interior.

The “critical radius” Rc is the radius of the sphere of fissile
material corresponding to Mc. Real nuclear weapons may be
expected to employ neutron reflectors and implosive spheri-
cal compression, both of which serve to reduce the amount
of fissile material below that of the bare critical mass.1

Nevertheless, the value of Mc is a useful benchmark for the
material requirements for a nuclear weapons program—for
example, the rapidity with which a potential nuclear prolifer-
ator could produce a bomb’s worth of highly enriched ura-
nium (HEU) or plutonium-239 (Pu) from gas centrifuges or
nuclear reactors, respectively. (Weapons grade plutonium
produced in a plutonium production reactor is preferable for
military purposes to power-reactor plutonium, but the latter
may also be used to produce a weapon, albeit with greater
difficulty.2) The value of the critical mass provides the fun-
damental context for arms control efforts to constrain or
reduce fissile material stocks below a certain number of
equivalent warheads. A basic understanding of the derivation
of the critical mass is therefore an important underpinning to
key aspects of contemporary international security.

The standard derivation of the critical mass involves solv-
ing a time-dependent diffusion equation with a source term,
and may be found in Serber’s long-declassified Los Alamos
Primer3 and in Reed’s The Physics of the Manhattan
Project.4 At the threshold critical mass, the time dependence
disappears, and one is left with having to solve the radial
component in spherical coordinates of a diffusion equation

with a source term. This or simplified versions may also be
found in a number of journal articles.5–9

The ready availability of the derivation and the value of the
critical mass for HEU and Pu assures that further publications in
this realm cannot provide any significant information to states or
terrorists pursuing nuclear weapons. However, a derivation ac-
cessible to those without calculus could help ensure that the next
generation of students interested in international security, arms
control, or nuclear non-proliferation has an intuitive quantitative
understanding of the critical mass needed for a nuclear explo-
sion. We provide such a derivation here, in the hopes of captur-
ing the key physical ideas without doing too much damage to
the underlying physics through various simplifications.

II. A SIMPLE MODEL

Hafemeister10 suggests following the simple physical pic-
ture of Serber3 to derive Rc by equating neutron production
rate PN due to nuclear fission within a spherical volume to
neutron loss rate LN through the boundary of that volume.
Hafemeister provides a straightforward estimate of PN within
a sphere of radius R. Take the typical velocity v of a neutron
produced by a nuclear fission to be that corresponding to its
kinetic energy (� 2 MeV). This neutron has a mean free path
between fission events kf¼ 1/nrf, where rf is the fission cross
section and n is the number density of fissile nuclei.11 The nu-
clear generation lifetime s¼ kf/v� 10�8 s is the correspond-
ing time between fissions. In each fission, an average number
� of neutrons is produced. Let N be the free neutron number
density in the sphere. (In reality, of course, N is a function of
radial distance within the sphere,3,4 but it is interesting to see
how far one can go with a much simpler assumption.) Then
PN is given by the total number of neutrons in the spherical
sample, N(4/3)pR3, times the net number of neutrons pro-
duced per neutron in a nuclear generation lifetime, (�� 1)/s,
where there term �� 1 takes into account the loss of the ini-
tiating neutron in each fission event. We therefore have

PN ¼ N
4

3
pR3

� �
� � 1

s
: (1)
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The neutron loss rate LN is the trickier part of the estimate.
(Even Serber’s Los Alamos lectures had trouble setting up
the condition at the loss boundary.3) For his simple model
Hafemeister puts

LN ¼ 4pR2Nv; (2)

saying that this represents the “neutron loss rate through an
area” but does not explain further. However, this expression
may be shown to result from an assumption that in a given nu-
clear generation lifetime all neutrons within a distance kf of
the outer boundary of the sphere of fissile material escape the
sphere, in an approximation where kf � R. That is, the num-
ber of neutrons in the outermost spherical shell of thickness kf

is just ½ð4=3ÞpR3 � ð4=3ÞpðR� kf Þ3�N � 4pR2kf N, with the
last approximation holding provided kf/R � 1. If these neu-
trons escape in time s, Eq. (2) follows because kf/s¼ v. The
critical radius R¼Rc then results from putting PN¼LN:

Rc ¼
3vs
ð� � 1Þ ¼

3

ð� � 1Þ kf : (3)

There are several problems with this simple model. Clearly,
not all neutrons within kf of the edge will escape, since most
will not have a purely radial velocity. Moreover, as Reed6

has emphasized, the cross section for neutron scattering in
both HEU and Pu is larger than the cross section for fission,
so that scattering cannot be neglected even in a lowest-order
estimate.

Solving for numerical values emphasizes the problems.12

For HEU, �¼ 2.64 and kf¼ 16.9 cm, so Eq. (3) gives
Rc¼ 31 cm, whereas the correct value is 8.4 cm. Because in
reality kf>Rc for HEU, the implicit assumption kf � Rc

underlying Eq. (2) cannot hold. Forcing that assumption in
setting up the model necessarily leads, for a self-consistent
model, to a value of Rc larger than kf, and therefore much
larger than the correct value.

III. AN IMPROVED SIMPLE MODEL

Our goal is to treat the estimate for PN and LN more care-
fully so that a self consistent and more accurate value of Rc

may result even for a simple model. A key step is to take
account of neutron elastic scattering. For both HEU and Pu,
the neutron scattering cross section rs is several times larger
than rf, so that the mean free path ks between scattering events
is several times smaller than kf. Over the course of a nuclear
generation lifetime s, a neutron will therefore scatter g¼ kf/ks

times. We take the distance dg traveled by a neutron that scat-
ters g times with step size ks to be given roughly by the usual
random-walk result,13,14 dg �

ffiffiffi
g
p

ks ¼ kf=
ffiffiffi
g
p

. Of the neu-
trons that do have an outward-directed radial velocity, dg will
typically not be oriented in a purely radial direction. In
Cartesian coordinates with x lying in the radial direction, the
radial distance traveled will be given by d2

g ¼ x2 þ y2 þ z2, so
that typically d2

g ¼ 3x2 or x ¼ ð1=
ffiffiffi
3
p
Þdg since there is no pre-

ferred direction. Therefore, the radial distance traveled by a
typical scattering neutron in time s is

x ¼ kfffiffiffiffiffi
3g
p : (4)

Roughly half these trajectories will be oriented outward to-
ward the boundary of the fissile material, with the other half
oriented inward.

We now describe the simple picture underlying our model,
building on Hafemeister’s approach. We divide our fissile
spherical mass into concentric layers. The interior layer is a
sphere of radius R� x. The outer layer is a spherical shell of
thickness x with neutron number density N. In a time s, half
of these outer-layer neutrons—those whose net motion is
radially outward—escape the shell and cause no fissions.
The other half, whose net motion is radially inward, contrib-
ute to maintaining the constant number density N of the inner
sphere. Each neutron present within this inner sphere causes
a fission event in time s.

We therefore have, for neutron production,

PN ¼ N
4

3
pðR� xÞ3 � � 1

s
: (5)

Meanwhile, neutron loss from the outer layer during this
same time period is given by

LN ¼
N

2

4

3
p

R3 � ðR� xÞ3

s

� �
: (6)

Equating neutron production and loss (at which point
R�Rc) gives R3

c ¼ ð2� � 1ÞðRc � xÞ3, or

Rc ¼
1ffiffiffiffiffi
3g
p ð2� � 1Þ1=3

ð2� � 1Þ1=3 � 1
kf ; (7)

where we have used Eq. (4). Equation (7) may be contrasted
with Eq. (3); the obvious difference is that the coefficient of
kf in Eq. (7) is smaller than 1, whereas in Eq. (3) it is larger.

IV. IMPROVING THE IMPROVED MODEL

We now evaluate the critical radius given by Eq. (7) for
HEU and plutonium (Pu-239).12 In the case of HEU, we
have ks¼ 4.57 cm so that g¼ kf/ks¼ 3.7, x¼ 0.30
kf¼ 5.1 cm, and Rc¼ 13 cm. The correct value is 8.4 cm, so
our estimate is high but correctly places the value as a sphere
about a decimeter in radius.

For Pu-239, we have �¼ 3.17, ks¼ 5.79 cm,
kf¼ 14.14 cm, so that g¼ 2.44, x¼ 0.37kf¼ 5.2 cm, and
Rc¼ 12 cm. This is smaller than the value for HEU, as it
should be, but nearly twice the correct value of 6.3 cm. Of
course, these errors in Rc are magnified when calculating
critical masses; our overestimates by factors of 1.5 and 1.9
for Rc become overestimates by factors of 3.4 and 6.9 for Mc

for HEU and Pu-239, respectively.
It is useful to ask why our simple model overestimates Rc.

Presumably this is due to overestimating neutron loss rela-
tive to neutron production. One obvious contributing factor
is the treatment of N as a constant with radius r. But physi-
cally, for diffusion leading to loss through a spherical bound-
ary, one expects N¼N(r) to fall as one moves from the
center to the periphery of the sphere. Neutron escape comes
from those radii where the neutron density is lowest, so we
overestimate neutron loss with a simple model that takes N
to be spatially constant. This in turn requires more fissile ma-
terial to balance the loss, leading to an overestimate of Rc.

We improve our estimates of Mc by incorporating a more
realistic neutron density variation into our model, without
rendering the model so complex as to defeat its virtue of sim-
plicity. Quantitative knowledge of N(r) derives from solving
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the radial component of the appropriate diffusion equation,
so incorporating results for N(r) involves a certain amount of
“cheating.” Full diffusion equation treatments of the problem
find that neutron density N(r) scales like4

NðrÞ � sinðr=dÞ
r=d

; (8)

where

d ¼ kf kt

3ð� � 1Þ

� �1=2

(9)

and we leave out a normalization constant in Eq. (8). Here kt

is the neutron total mean free path, equal to 3.60 cm and
4.11 cm for HEU and Pu-239, respectively, and thus giving
d¼ 3.52 cm and d¼ 2.99 cm for the two cases. Using these
values for d, we plot N(r) [Eq. (8)] for HEU and Pu-239 in
Fig. 1.

Fig. 1 shows, rather dramatically, how N falls off with r,
contrary to the assumption of our model. An improved
approximation would be to define N(r)¼N in the innermost
sphere of the critical mass and use Fig. 1 to approximate the
relative value of N(r) in the outer layer from which neutrons
escape. Then, in this “improved improved model,” we would
replace N by N/a in Eq. (6), where a is the ratio of N in the
innermost sphere to that in the outer spherical layer. With
this substitution, Eq. (7) becomes

Rc ¼
1ffiffiffiffiffi
3g
p ½2að� � 1Þ þ 1�1=3

½2að� � 1Þ þ 1�1=3 � 1
kf : (10)

Recalling that the width of the outer layer is x¼ 5.1 cm and
5.2 cm for HEU and Pu, and recognizing that the total num-
ber of neutrons in a sphere or spherical shell with constant
neutron density is dominated by those at the largest radial
values (since the volume of a shell goes as r2), Fig. 1

suggests choosing a¼ 3 and 2.5 for HEU and Pu, respec-
tively. With these choices, we find Rc¼ 9.3 cm for both HEU
and Pu. These overestimates, by factors of 1.1 and 1.5 for Rc,
lead to overestimates in Mc by factors of 1.3 and 3.2 for
HEU and Pu, respectively.

V. CONCLUSION

The approach to calculating the critical radius of a fissile
isotope described here relies on a simple physical model in
which the production of neutrons in the fissile material vol-
ume is balanced by the loss of those sufficiently close to the
boundary of that volume and moving in the right direction to
escape. Critical masses then follow via the densities for HEU
or Pu. Our hope is that the intuitive nature of this calculation,
and its use of only elementary algebra, will make the origin
of the disturbingly small (from a weapons proliferation point
of view) critical masses for HEU and Pu accessible to a
larger number of students or professionals who wish to be
involved in international security, arms control, or nuclear
non-proliferation issues.
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Fig. 1. Relative neutron density as a function of radius in bare critical

spheres of HEU (solid curve; critical radius Rc¼ 8.4 cm) and Pu-239 (dashed

curve; Rc¼ 6.3 cm).
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