The I Theory of Money

Markus K. Brunnermeier & Yuliy Sannikov

Princeton University
Motivation

- Framework to study monetary and financial stability
- Interaction between monetary and macroprudential policy
- Connect theory of value and theory of money
- Intermediation (credit)
 - “Excessive” leverage and liquidity mismatch
- Inside money – as store of value
 - Demand for money rises with endogenous volatility
 - In downturns, intermediaries create less inside money
 - Endogenous money multiplier = f(capitalization of critical sector)
 - Value of money goes up – Disinflation spiral a la Fisher (1933)
 - Fire-sales of assets – Liquidity spiral
- Flight to safety
- Time-varying risk premium and endogenous volatility dynamics
Some literature

- Macro-friction models without money
 - Kiyotaki & Moore, BruSan2014, He & Krishnamurthy, DSS2015

- “Money models” without intermediaries
 - Money pays no dividend and is a bubble – store of value

- With intermediaries/inside money
 - “Money view” (Friedman & Schwartz) vs. “Credit view” (Tobin)

- New Keynesian Models:
 - BGG, Christian et al., … money in utility function
Some literature

- Macro-friction models without money
 - Kiyotaki & Moore, BruSan2014, He & Krishnamurthy, DSS2015

- “Money models” without intermediaries
 - Store of value: Money pays no dividend and is a bubble
Some literature

- **Macro-friction models without money**
 - Kiyotaki & Moore, BruSan2014, He & Krishnamurthy, DSS2015

- **“Money models” without intermediaries**
 - Store of value: Money pays no dividend and is a bubble

<table>
<thead>
<tr>
<th>Friction</th>
<th>OLG</th>
</tr>
</thead>
<tbody>
<tr>
<td>deterministic</td>
<td>endowment risk</td>
</tr>
<tr>
<td>borrowing constraint</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Only money</th>
<th>Samuelson</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>With capital</th>
<th>Diamond</th>
</tr>
</thead>
</table>
Some literature

- Macro-friction models without money
 • Kiyotaki & Moore, BruSan2014, He & Krishnamurthy, DSS2015
- “Money models” without intermediaries
 • Store of value: Money pays no dividend and is a bubble

<table>
<thead>
<tr>
<th>Friction</th>
<th>OLG</th>
<th>Incomplete Markets + idiosyncratic risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk</td>
<td>deterministic</td>
<td>endowment risk</td>
</tr>
<tr>
<td></td>
<td></td>
<td>borrowing constraint</td>
</tr>
<tr>
<td>Only money</td>
<td>Samuelson</td>
<td>Bewley</td>
</tr>
<tr>
<td>With capital</td>
<td>Diamond</td>
<td>Ayagari, Krusell-Smith</td>
</tr>
</tbody>
</table>
Some literature

- Macro-friction models without money
 - Kiyotaki & Moore, BruSan2014, He & Krishnamurthy, DSS2015

- “Money models” without intermediaries
 - Store of value: Money pays no dividend and is a bubble

<table>
<thead>
<tr>
<th>Friction</th>
<th>OLG</th>
<th>Incomplete Markets + idiosyncratic risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk</td>
<td>deterministic</td>
<td>endowment risk</td>
</tr>
<tr>
<td></td>
<td></td>
<td>borrowing constraint</td>
</tr>
<tr>
<td></td>
<td></td>
<td>investment risk</td>
</tr>
</tbody>
</table>

- Only money
 - Samuelson
 - Bewley

- With capital
 - Diamond
 - Ayagari, Krusell-Smith
 - Basic “I Theory”
Some literature

- Macro-friction models without money
 - Kiyotaki & Moore, BruSan2014, He & Krishnamurthy, DSS2015

- “Money models” without intermediaries
 - Store of value: Money pays no dividend and is a bubble

<table>
<thead>
<tr>
<th>Friction</th>
<th>OLG</th>
<th>Incomplete Markets + idiosyncratic risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk</td>
<td>deterministic</td>
<td>endowment risk</td>
</tr>
<tr>
<td></td>
<td></td>
<td>borrowing constraint</td>
</tr>
<tr>
<td></td>
<td></td>
<td>investment risk</td>
</tr>
<tr>
<td>Only money</td>
<td>Samuelson</td>
<td>Bewley</td>
</tr>
<tr>
<td>With capital</td>
<td>Diamond</td>
<td>Ayagari, Krusell-Smith</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Basic “I Theory”</td>
</tr>
</tbody>
</table>

- With intermediaries/inside money
 - “Money view” (Friedman & Schwartz) vs. “Credit view” (Tobin)
Some literature

- Macro-friction models without money
 - Kiyotaki & Moore, BruSan2014, He & Krishnamurthy, DSS2015

- “Money models” without intermediaries
 - Store of value: Money pays no dividend and is a bubble

Friction OLG Incomplete Markets + idiosyncratic risk

<table>
<thead>
<tr>
<th>Friction</th>
<th>OLG</th>
<th>Incomplete Markets + idiosyncratic risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk</td>
<td>deterministic</td>
<td>endowment risk</td>
</tr>
<tr>
<td></td>
<td></td>
<td>borrowing constraint</td>
</tr>
<tr>
<td></td>
<td></td>
<td>investment risk</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Only money</th>
<th>Samuelson</th>
<th>Bewley</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>With capital</th>
<th>Diamond</th>
<th>Ayagari, Krusell-Smith</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic “I Theory”</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- With intermediaries/inside money
 - “Money view” (Friedman & Schwartz) vs. “Credit view” (Tobin)

- New Keynesian Models: BGG, Christian et al., ... money in utility function
Roadmap

- Model absent monetary policy
 - Toy model: one sector with outside money
 - Two sector model
 - Adding intermediary sector and inside money

- Model with monetary policy

- Model with macro-prudential policy
One sector basic model

- Technologies a

- Each households can only operate one firm
 - Physical capital
 \[
 \frac{dk_t}{k_t} = \left(\Phi(t) - \delta\right)dt + \sigma^a dZ^a_t + \bar{\sigma} d\tilde{Z}^a_t
 \]
 - Output
 \[
 y_t = Ak_t
 \]

- Demand for money
Adding outside money

- $q_t K_t$ value of physical capital
 - Postulate constant q_t
- $p_t K_t$ value of outside money
 - Postulate value of money changes proportional to K_t

Each households can only operate one firm

- Physical capital
 \[
 \frac{dk_t}{k_t} = (\Phi(t_t) - \delta)dt + \sigma^a dZ^a_t + \bar{\sigma} d\tilde{Z}^a_t
 \]
- Output
 \[
 y_t = Ak_t
 \]

Demand for money

Technologies α
Adding outside money

- qK_t value of physical capital
 - $dr^a = \frac{A^{-t}}{q}dt + (\Phi(t) - \delta)\ dt + \sigma^a dZ_t^a + \tilde{\sigma}d\tilde{Z}_t^a$

- pK_t value of outside money
 - $dr^M = (\Phi(t) - \delta)\ dt + \sigma^a dZ_t^a$

- Each households can only operate one firm
 - Physical capital
 - $\frac{dk_t}{k_t} = (\Phi(t_t) - \delta)dt + \sigma^a dZ_t^a + \tilde{\sigma}d\tilde{Z}_t^a$
 - Output
 - $y_t = Ak_t$
Demand with $E\left[\int_{0}^{\infty} e^{-\rho t} \log c_t \, dt\right]$
Demand with log-utility

- **qK_t** value of physical capital
 - \(dr^a = \frac{A-\ell}{q}dt + (\Phi(\ell) - \delta) dt + \sigma^a dZ_t^a + \tilde{\sigma} d\tilde{Z}_t^a \)

- **pK_t** value of outside money
 - \(dr^M = (\Phi(\ell) - \delta) dt + \sigma^a dZ_t^a \)

- Consumption demand: \(\rho(p + q)K_t \)

- Asset (share) demand \(x^a \):

 \[
 E[dr^a - dr^M]/dt = Cov[dr^a - dr^M, \frac{dn_t^a}{n_t^a}] = x^a \tilde{\sigma}^2
 \]

 \[
 x^a = \frac{E[dr^a - dr^M]/dt}{\tilde{\sigma}^2} = \frac{(A-\ell)/q}{\tilde{\sigma}^2}
 \]

- Investment rate: (Tobin's q)

 \[
 \Phi'(\ell) = 1/q
 \]
Demand with log-utility

- **qK_t** value of physical capital
 - $dr^a = \frac{A-\iota}{q}dt + (\Phi(\iota) - \delta) \ dt + \sigma^a dZ_t^a + \bar{\sigma} d\tilde{Z}_t^a$

- **pK_t** value of outside money
 - $dr^M = \Phi(\iota) \ dt + \sigma^a dZ_t^a$

- Consumption demand: $\rho(p + q)K_t$

- Asset (share) demand x^a:
 $$E[dr^a - dr^M]/dt = Cov[dr^a - dr^M, \frac{dn^a_t}{n_t^a}] = x^a \bar{\sigma}^2$$

- Investment rate: (Tobin’s q)
 - For $\Phi(\iota) = \frac{1}{\kappa} \log(\kappa \iota + 1) \Rightarrow \iota = \frac{q-1}{\kappa}$
Market clearing

- qK_t value of physical capital
 - $dr^a = \frac{A-\iota}{q}dt + (\Phi(\iota) - \delta) dt + \sigma^a dZ^a_t + \tilde{\sigma} d\tilde{Z}^a_t$

- pK_t value of outside money
 - $dr^M = (\Phi(\iota) - \delta) dt + \sigma^a dZ^a_t$

- Consumption demand:
 - $\rho(p + q)K_t = (A - \iota)K_t$

- Asset (share) demand x^a:
 - $E[dr^a - dr^M]/dt = Cov[dr^a - dr^M, \frac{dn_t^a}{n_t^a}] = x^a \tilde{\sigma}^2$

- Investment rate: (Tobin’s q)
 - $\Phi'(\iota) = 1/q$
 - For $\Phi(\iota) = \frac{1}{\kappa} \log(\kappa \iota + 1) \Rightarrow \iota = \frac{q-1}{\kappa}$
Equilibrium

<table>
<thead>
<tr>
<th>Moneyless equilibrium</th>
<th>Money equilibrium</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_0 = 0)</td>
<td>(p = \frac{\sigma - \sqrt{\rho}}{\sqrt{\rho}} q)</td>
</tr>
<tr>
<td>(q_0 = \frac{\kappa A + 1}{\kappa \rho + 1})</td>
<td>(q = \frac{\kappa A + 1}{\kappa \sqrt{\rho} \sigma + 1})</td>
</tr>
</tbody>
</table>

![Graph](image.png)
Welfare analysis

<table>
<thead>
<tr>
<th>Moneyless equilibrium</th>
<th>Money equilibrium</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_0 = 0)</td>
<td>(p = \frac{\bar{\sigma} - \sqrt{\rho}}{\sqrt{\rho}} q)</td>
</tr>
<tr>
<td>(q_0 = \frac{\kappa A + 1}{\kappa \rho + 1})</td>
<td>(q = \frac{\kappa A + 1}{\kappa \sqrt{\rho} \bar{\sigma} + 1})</td>
</tr>
<tr>
<td>(g_0)</td>
<td>(g)</td>
</tr>
<tr>
<td>welfare_0 < welfare</td>
<td></td>
</tr>
</tbody>
</table>
Welfare analysis

<table>
<thead>
<tr>
<th>Moneyless equilibrium</th>
<th>Money equilibrium</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_0 = 0)</td>
<td>(p = \frac{\bar{\sigma} - \sqrt{\rho}}{\sqrt{\rho}} q)</td>
</tr>
<tr>
<td>(q_0 = \frac{\kappa A + 1}{\kappa \rho + 1})</td>
<td>(q = \frac{\kappa A + 1}{\kappa \sqrt{\rho \bar{\sigma}} + 1})</td>
</tr>
</tbody>
</table>

welfare\(_0\) < welfare

What ratio nominal to total wealth \(\frac{p}{q+p} \) maximizes welfare?

- Force agents to hold less \(k \) & more money
- Raise \(\frac{p}{q+p} \) if and only if \(\bar{\sigma}(1 - \kappa \rho) \leq 2\sqrt{\rho} \)
- Lowers \(q \Rightarrow \) higher \(E[dr^a - dr^M] = \frac{A-\mu}{q} dt \)
- Create \(q \)-risk to make precautionary money savings more attractive

pecuniary externality
Roadmap

- Model absent monetary policy
 - Toy model: one sector with outside money
 - Two sector model with outside money
 - Adding intermediary sector and inside money

- Model with monetary policy

- Model with macro-prudential policy
Outline of two sector model

- Technologies b

- Technologies a

Households have to
- Specialize in one subsector for one period
 \[
 \frac{dk_t}{k_t} = \cdots dt + \sigma^b dZ^b_t + \tilde{\sigma} d\tilde{Z}^b_t
 \]
- Demand for money

\[
\frac{dk_t}{k_t} = \cdots dt + \sigma^a dZ^a_t + \tilde{\sigma} d\tilde{Z}^a_t
\]
Add outside money

- Technologies \(b \)

- Technologies \(a \)

Households have to
- Specialize in one subsector for one period
- Demand for money
Roadmap

- Model absent monetary policy
 - Toy model: one sector with outside money
 - Two sector model with outside money
 - Adding intermediary sector and inside money

- Model with monetary policy

- Model with macro-prudential policy
Add intermediaries

- Technologies b
 - Risk can be partially sold off to intermediaries

- Technologies a
 - Risk is not contractable (Plagued with moral hazard problems)
Add intermediaries

- Technologies b

 - Intermediaries
 - Can hold outside equity & diversify within sector b
 - Monitoring

- Technologies a

 - Outside Money
Add intermediaries

- Technologies b
- Technologies a

- Intermediaries
 - Can hold outside equity & diversify within sector b
 - Monitoring
Add intermediaries

- Technologies b

 - Intermediaries
 - Can hold outside equity & diversify within sector b
 - Monitoring
 - Create inside money
 - Maturity/liquidity transformation
Shock impairs assets: 1st of 4 steps

- Technologies b

- Technologies a
Shrink balance sheet: 2nd of 4 steps

- Technologies \(b \)
- Technologies \(a \)
Liquidity spiral: asset price drop: 3rd of 4

- Technologies b

- Technologies a

Switch
Disinflationary spiral: 4th of 4 steps

- Technologies \(b \)

- Technologies \(a \)
Formal model: capital & output

Technologies

Physical capital K_t
- Capital share

$$\psi_t \quad 1 - \psi_t$$

Output goods

Aggregate good (CES)
- Consumed or invested
- Numeraire

$$Y_t^b = Ak_t^b \quad \text{Imperfect substitutes} \quad Y_t^a = Ak_t^a$$

$$Y_t = \left(\frac{1}{2} (Y_t^b)^{(s-1)/s} + \frac{1}{2} (Y_t^a)^{(s-1)/s} \right)^{s/(s-1)}$$

Price of goods

$$P_t^b = \frac{1}{2} \left(\frac{Y_t}{Y_t^b} \right)^{1/s} \quad P_t^a = \frac{1}{2} \left(\frac{Y_t}{Y_t^a} \right)^{1/s}$$

- Model setup in paper is more general: $Y_t = A(\psi_t)K_t$
Formal model: risk

- When k_t is employed in sector a by agent j

\[dk_t = (\Phi(\iota_t) - \delta)k_t dt + \sigma^a k_t dZ^a_t + \sigma^j k_t d\tilde{Z}^a_t \]

- $\Phi(\iota_t)$ is increasing and concave, e.g. $\log[(\kappa \iota_t + 1)/\kappa]$
- All dZ are independent of each other

- Intermediaries can diversify within sector b
 - Face no idiosyncratic risk

- Households cannot become intermediaries or vice versa
Asset returns on money

- **Money**: fixed supply in baseline model, total value $p_t K_t$
 - Return = capital gains (no dividend/interest in baseline model)
 - If $d p_t / p_t = \mu_t p_t dt + \sigma_t p_t dZ_t$,
 - $d K_t / K_t = (\Phi(\eta_t) - \delta) dt + (1 - \psi_t) \sigma^K a dZ^a_t + \psi_t \sigma^K b dZ^b_t$
 - $d r^M_t = (\Phi(\eta_t) - \delta + \mu_t p_t + (\sigma^K_t)^T \sigma^K_t) dt + (\sigma^K_t + \sigma^K_t) dZ_t$

- $\pi_t = \frac{p_t}{q_t + p_t}$ fraction of wealth in form of money
Capital/risk shares

Technologies \(b \)

- Money
- Inside equity
- Risky Claim
- \(\psi_t q_t K_t \)
- \(1 - \chi_t \)
- \((1 - \chi_t) \psi_t q_t K_t \)

Technologies \(a \)

Fraction \(\alpha_t \) of HH

- Money
- Inside Money (deposits)
- Net worth \(N_t \)
- HH Net worth

\[HH Net worth = (1 - \psi_t) q_t K_t \]
Capital/risk shares

- **Technologies b**
 - Inside equity: χ_t
 - Risky Claim: $\psi_t q_t K_t$
 - Inside equity: $1 - \chi_t$

- **Technologies a**
 - Fraction α_t of HH

If $\chi_t > \chi$, inside and outside equity earn same returns (as portfolio of b-technology and money).

If the equity constraint $\chi_t = \chi$ binds, inside equity earns a premium λ.
Allocation

- Equilibrium is a map

 Histories of shocks $\{Z_\tau, 0 \leq \tau \leq t\}$ \rightarrow prices q_t, p_t, λ_t, allocation α_t, χ_t & portfolio weights (x_t, x^a_t, x^b_t)

 wealth distribution

 $\eta_t = \frac{N_t}{(p_t+q_t)K_t} \in (0,1)$

 intermediaries’ wealth share

- All agents maximize utility
 - Choose: portfolio, consumption, technology

- All markets clear
 - Consumption, capital, money, outside equity of b
Numerical example: capital shares

$$\rho = 5\%, A = .5, \sigma^a = \sigma^b = .4, \sigma^j = .9, \tilde{\sigma}^a = .6, \tilde{\sigma}^a = 1.2, s = .8, \Phi(t) = \frac{\log[k\iota + 1]}{\kappa}, \kappa = 2, \chi = .001$$
Numerical example: prices

Disinflation spiral

Liquidity spiral

q, p

q under perfect sharing of aggregate risk

p under perfect sharing of aggregate risk
Numerical example: prices

\[\pi = \frac{p}{p+q} \]

Disinflation spiral

Liquidity spiral

\(p \) under perfect sharing of aggregate risk

\(q \) under perfect sharing of aggregate risk
Numerical example: dynamics of η

\[
\sigma_{\eta}^{t} = \frac{x_{t}(\sigma^{b}1^{b} - \sigma_{t}^{K})}{1 - \left(\frac{\psi_{t}(1-x_{t})-\eta}{\eta}\right)\frac{-\pi'(\eta)}{\pi/\eta}}
\]

- **volatility in equilibrium**
- **fundamental portion of equilibrium volatility**
- **drift in equilibrium**
- **drift under perfect sharing of aggregate risk**
- **steady state**

fundamental volatility
Overview

- No monetary economics
 - Fixed outside money supply
 - Amplification/endogenous risk through
 - Liquidity spiral asset side of intermediaries’ balance sheet
 - Disinflationary spiral liability side

- Monetary policy
 - Aside: Money vs. Credit view (via helicopter drop)
 - Wealth shifts by affecting relative price between
 - Long-term bond
 - Short-term money
 - Risk transfers – reduce endogenous aggregate risk

- Macroprudential policy
- Adverse shock → value of risky claims drops
- Monetary policy response: cut short-term interest rate
 - Value of long-term bonds rises - “stealth recapitalization”
- Liquidity & Deflationary Spirals are mitigated
Effects of policy

- Effect on the value of money (liquid assets) – helps agents hedge idiosyncratic risks, but distorts investment
 - We saw this in the toy model with one sector

- Redistribution of aggregate risk, mitigates risk that an essential sector can become undercapitalized

- Affects earnings distribution, rents that different sectors get in equilibrium
Monetary policy and endogenous risk

- Intermediaries’ risk (borrow to scale up)

$$\sigma_t^\eta = \frac{x_t(\sigma^b 1^b - \sigma^K_t)}{1 - \left(\frac{\psi - \eta - \pi'(\eta)}{\pi/\eta}\right) + \left(\frac{\psi(1 - \chi - \eta - \pi(1 - \psi)}{\eta} + \frac{\pi(1 - \psi)}{\eta}\right) \frac{b_t - B'(\eta)}{p_t B(\eta)/\eta}}$$

- Example:

$$\frac{b_t B'(\eta)}{p_t B(\eta)} = \alpha_t \frac{\pi'(\eta)}{\pi(1 - \pi)}$$

- Intuition:
 with right monetary policy bond price $B(\eta)$ rises as η drops “stealth recapitalization”
 - Can reduce liquidity and disinflationary spiral
Numerical example with monetary policy

- Allocations

- Prices

Higher intermediaries' capital share \((1 - \chi)\psi\)

Less production of good \(a\)

\(p\) less disinflation

\(q\) is more stable
Numerical example with monetary policy

\[
\sigma_t^\eta = \frac{x_t (\sigma^b 1^b - \sigma^K)}{1 - \left(\frac{\psi - \eta}{\eta} \right) - \pi' (\eta) + \left(\frac{\psi - \eta}{\eta} + \frac{\pi}{\eta} (1 - \psi) \right) \frac{b_t - B'(\eta)}{p_t B(\eta) / \eta}}
\]

Recall
\[
\frac{b_t B'(\eta)}{p_t B(\eta)} = \alpha_t \frac{\pi'(\eta)}{\pi (1 - \pi)}
\]
Numerical example with monetary policy

- Welfare:
 HH and Intermediaries

Sum
Monetary policy ... in the limit

- Full risk sharing of all aggregate risk

\[\sigma_t^\eta = \frac{x_t}{1 - \left(\frac{\psi - \eta}{\eta}\right) - \frac{\pi'}{\pi} + \left(\frac{\psi(1 - \chi)}{\eta} + \frac{\pi(1 - \psi)}{\eta}\right) \frac{b_t - B'(\eta)}{p_t B(\eta)/\eta}} \quad \lim_{t \to -\infty} \left(\sigma^b 1^b - \sigma^K_t\right) \]

- \(\eta \) is deterministic and converges over time towards 0
Monetary policy ... in the limit

- full risk sharing of all aggregate risk

- Aggregate risk sharing makes q deterministic

- Like in benchmark toy model
 - Excessive k-investment
 - Too high q (pecuniary externality)
 - Lower capital return

- Endogenous risk corrects pecuniary externality
Overview

- No monetary economics
 - Fixed outside money supply
 - Amplification/endogenous risk through
 - Liquidity spiral asset side of intermediaries’ balance sheet
 - Disinflationary spiral liability side

- Monetary policy
 - Wealth shifts by affecting relative price between
 - Long-term bond
 - Short-term money
 - Risk transfers – reduce endogenous aggregate risk

- Macroprudential policy
 - Directly affect portfolio positions
MacroPru policy

- Regulator can control
 - Portfolio choice ψ_s, x_s
 - Investment decision $\iota(q)$
 - Consumption decision c

- Regulator cannot control
 - Investment decision $\iota(q)$
 - Consumption decision c

of intermediaries and households
MacroPru policy

- Regulator can control
 - Portfolio choice ψ_s, x_s
 - De-facto controls q and p within some range
 - De-factor controls wealth share η
 - Force agents to hold certain assets and generate capital gains

- cannot control
 - Investment decision $\iota(q)$
 - Consumption decision c
 - Of intermediaries and households

- In sum, regulator maximizes sum of agents value function
 - Choosing ψ^b, q, η
MacroPru policy: Welfare frontier

- Stabilize intermediaries net worth and earnings
- Control the value of money to allow HH insure idiosyncratic risk (investment distortions still exists, otherwise can get 1st best)
Conclusion

- Unified macro model to analyze
 - Financial stability - Liquidity spiral
 - Monetary stability - Fisher disinflation spiral

- Exogenous risk &
 - Sector specific
 - Idiosyncratic

- Endogenous risk
 - Time varying risk premia – flight to safety
 - Capitalization of intermediaries is key state variable

- Monetary policy rule
 - Risk transfer to undercapitalized critical sectors
 - Income/wealth effects are crucial instead of substitution effect
 - Reduces endogenous risk – better aggregate risk sharing
 - Self-defeating in equilibrium – excessive idiosyncratic risk taking

- Macro-prudential policies
 - MacroPru + MoPo to achieve superior welfare optimum